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Abstract

In the last decade, paper analytical devices (PADs) have evolved into sophis-
ticated yet simple sensors with biological and environmental applications in
the developed and developing world. The focus of this review is the techno-
logical improvements that have over the past five years increased the appli-
cability of PADs to real-world problems. Specifically, this review reports on
advances in sample processing, fluid flow control, signal amplification, and
component integration. Throughout, we have sought to emphasize advances
that retain the main virtues of PADs: low cost, portability, and simplicity.
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1. INTRODUCTION

The objective of the present review is to provide a snapshot of the field of paper analytical devices
(PADs), particularly the thought processes that have led us to the current state of the art. The ad-
vances in PADs we discuss here have made it possible to carry out increasingly sophisticated assays
using inexpensive paper platforms. Over the last five years, a number of enabling technological
advances have been introduced to paper devices, including timed delivery of reagents (1–3), mag-
netic concentration (4–7), signal amplification (4, 8–11), automatic on-device washing (1, 2, 10),
hollow channels (4, 12–14), and blood separation (15–17). The powerful yet simple PAD shown in
Figure 1, known as the NoSlip (discussed in Section 7), is an example of a paper device that inte-
grates several of these individual advances for detection of proteins in the low picomolar range (14).
Although many of the technologies discussed in this review are common in more sophisticated as-
say systems, some clever science and engineering has been required to introduce them into simple
paper devices costing less than US$2, which is a benchmark for low-cost point-of-care applications.

The PAD field is moving very quickly, and the specific advances we discuss here will likely be
superseded by even more clever and functional systems within just a few years. We hope, however,
that the general principles we discuss will provide guidance to future researchers who will develop
the tools necessary for PADs to become a routine part of health care systems worldwide.

The PADs discussed in this review were developed within the last five years and can perform
quantitative assays using a handheld reader such as a camera phone, portable potentiostat, digital
multimeter, commercial glucose meter, or stopwatch. Specifically excluded from this article are

a

b cc

Figure 1
Photographs of a sophisticated electrochemical paper analytical device (PAD) known as the NoSlip. (a) The
NoSlip and its 3D-printed holder. (b) The NoSlip being inserted into its holder. (c) The fully assembled PAD
connected to an electrochemical measurement device (not pictured).
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important closely related topics for which excellent recent reviews already exist. These include
the history (18–21; see also 22, 23 for more information on lateral flow assays) and fabrication
(19, 20, 24–28) of PADs as well as the various detection methods (18, 22, 24, 27, 29) used by
PADs. In addition, several very fine recent reviews contain subject matter that to some degree
overlaps with that discussed here. These include a comprehensive review about the fabrication
and applications of chemical sensing PADs by Henry and coworkers (28) and a perspective on
recent technological and engineering advances by Abbas and coworkers (30). The specific focus
here on improved device functionality, underpinned by increasingly sophisticated design concepts
that are intended to simplify the operation of PADs by end users, distinguishes the present review
from earlier reports.

2. MULTIDIMENSIONAL PAPER DEVICES

Multidimensionality in paper devices enables multiplexing, reduces size, and incorporates addi-
tional sample processing functions. For example, the invention of two-dimensional (2D) PADs
by Whitesides and coworkers (31) made it possible to carry out separations (15, 16, 32–34) and
simultaneously detect multiple analytes using a single sample reservoir (11, 35–44). The subse-
quent development of three-dimensional (3D) PADs led to even more sophisticated operations,
such as on-device delivery of reagents (4, 8, 45–49), controlled flow rates (45, 47, 50–52), fluidic
switches (3, 53–55), and the ability to incorporate microscale objects into assays (4, 7, 45). Nu-
merous publications have focused on the basic operating principles and fabrication methods for
2D and 3D PADs (56, 57), and therefore they will be described only briefly here.

2.1. Two-Dimensional Paper Analytical Devices

Two-dimensional PADs date back to 1949, when Müller & Clegg (58) used an embossing tool to
form patterns of hydrophobic and hydrophilic domains on a piece of paper. However, Whitesides
and coworkers (31) ushered in the modern era of 2D PADs in 2007. 2D PADs are easily fabricated
by patterning a single piece of paper (often chromatography paper) with a hydrophobic material,
such as photoresist or wax, to define hydrophilic reservoirs and microfluidic channels. Fluid flow
is usually driven by capillary forces present within the hydrophilic, fiber-containing regions of
the PAD. Often, assay-specific reagents are spotted onto predefined regions of the paper after
patterning (2, 40). For real-world applications, some sort of device packaging is also provided to
make the PAD functional in the hands of a user (33, 59–62).

A wide variety of detection modalities have been applied to 2D PADs. For example, colorimetric
assays have been developed to test for amino acids (63), bacteria (35, 64), biomarkers for cancer
(11), lung (36) and liver (17, 65) function, gases (66–68), infectious diseases (69), ions (37, 38,
70–72), heavy metals (39–41, 73–80), small molecules (42, 72, 74, 81–83), pH (37, 44, 84), and
proteins (1, 85, 86). In all of these cases, complexing agents, nanoparticles, or enzymes were
used to generate a visible color change. Electrochemical methods have also been used to detect
a wide range of targets on 2D PADs, including antibiotics (87), gases (88, 89), metals (90), pH
(91), and proteins (10, 92). Physical parameters, such as force (93), infrared (94) and UV (95)
light, strain (96), and temperature and humidity (97), have also been detected electrochemically. A
number of specific electrochemical techniques have been adapted to 2D PADs, including relative
resistivity, impedance, amperometry, conductivity, and voltammetry (linear, cyclic, square wave,
and differential pulse).

In the sections below, we highlight two specific examples of 2D PADs that, taken together,
typify some of the interesting advances that are characteristic of the field. The first is a 2D PAD
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for the detection of a protein marker for malaria, developed by Yager and coworkers (98); the
second is a device for the detection of glucose, developed by Laiwattanapaisal and coworkers (32).

2.2. Three-Dimensional Paper Analytical Devices

The fabrication of 3D PADs involves additional complexities that need not be considered for 2D
devices. Foremost among these challenges is the requirement for fluidic communication between
layers of the device, but providing for even compression of the layers and more complex packaging
are also important.

There are two common methods for fabricating 3D PADs. The first was devised by Whitesides
and coworkers (57) in 2008 and uses multiple pieces of wax-patterned paper that are aligned and
stacked upon one another. This important advance stimulated others to think about constructing
PADs in 3D, but the fabrication methodology used in this first publication is complex and does
not lend itself to low-cost manufacturing due to the inherent difficulty of aligning and affixing the
individual layers. The second method, first developed by our group in 2011 (56), is much simpler,
resolves the problems of cost, and provides additional benefits. In this case, a single piece of wax-
patterned paper is folded using the principles of origami, such that the pre-patterned channels
self-align and the vias (required for vertical fluid flow) are in fluidic contact (56). Moreover, because
the individual layers are not taped together, the device can be easily unfolded to read out assay
results within its interior layers. We call this family of devices oPADs, because they are assembled
by origami. An example of an early-stage oPAD is shown in Figure 2.

The three most prominent detection strategies used for 3D PADs are colorimetry, electro-
chemistry, and time-based measurements. For colorimetry using 3D PADs, assays have been
described for bacteria (99), a virus (100), metals (79, 101, 102), small molecules (5, 32, 50, 103–
105), anions (106), and proteins (46, 50, 56, 104). Electrochemistry has been used to detect targets
including DNA (6, 62, 107), heavy metals (101, 108), small molecules (45, 109), gases (110), ions
(111, 112), and proteins (7, 9, 60, 61, 113, 114). Time-based measurements have been demon-
strated for enzymes (8) and small molecules (8, 47, 108, 115).

aa bb

Figure 2
Photographic illustration of the origami fabrication process. (a) A sheet of chromatography paper is wax-patterned with the multiple
origami paper analytical device (oPAD) designs. Each individual oPAD device is cut from the sheet and briefly heated so that the wax
penetrates the thickness of the paper; the paper is then folded, compressed, and used for detection. (b) A partially unfolded oPAD that
(prior to unfolding) had different colored dyes added to its inlets for demonstration purposes.
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2.3. Hybrid Paper Analytical Devices

Each of the materials commonly used for constructing microfluidic devices (paper, glass, and
plastic) has advantages and disadvantages, and the degree to which they are used depends on the
intended application. For paper devices, the primary advantages are ease of fabrication, low cost,
and low power requirements (a pump is usually not required). Other materials provide more con-
trollable flow characteristics, smaller and more precise channel dimensions, better control over
surface properties, transparency (for optical detection), and rigidity. Accordingly, for some pa-
per fluidic applications, there may be advantages associated with introducing a second or third
material. We consider here only those hybrid devices in which paper is the dominant or func-
tional material. The most common paper-based hybrids are those that combine paper with either
polydimethylsiloxane (PDMS) or a hard plastic.

2.3.1. Paper and polydimethylsiloxane. The combination of paper and PDMS can be advan-
tageous for incubations spanning multiple hours. Paper-based spot arrays cost less and are more
biodegradable than plastic 96-well plates (116); however, wax-patterned chromatography paper
loses some of its structural integrity and fluid confinement ability when in the presence of aqueous
solutions for periods of more than approximately 20 min. To resolve this problem, Peltonen and
coworkers (117) infused a cellulose matrix with PDMS to create microarrays that can hold a larger
volume of liquid for at least 50 min. After 50 min, evaporation becomes a problem. To address
this, Funes-Huacca and coworkers (118) used paper as a portable, self-contained culture chamber
and added a PDMS lid to supply the bacteria with oxygen while simultaneously preventing evapo-
ration of the growth medium. Clearly there are some advantages of combining paper and PDMS,
but of course those advantages must outweigh the additional cost and complexity of hybrid device
fabrication.

2.3.2. Paper and plastic. The integration of plastic into PADs has been shown to provide addi-
tional functionality including sophisticated valving (53), reduced rates of evaporation (119), and
enhanced rigidity (59, 119). For example, Lutz and coworkers (33) combined paper and plastic for
multiplexed detection of a malaria antigen and a salmonella antibody in patient plasma samples.
In this case, the plastic reduced the evaporation rate and increased durability, whereas the paper
regulated flow, stored predried reagents, metered fluid volume, filtered the sample, and acted as
a batch mixer (see Section 4.5).

For electrochemical detection, carbon ink electrodes printed on PADs using a stencil (4, 7,
120) or screen (108, 121) are satisfactory for most applications. However, the porous nature of
chromatography paper can lead to electrodes that are nonuniform, insufficiently conductive, or not
robust enough for particular applications. Electrodes printed on plastic can resolve these problems
(34, 61, 122), are commercially available, and have been incorporated into PADs (32, 123–126).

3. HOLLOW CHANNELS

The cellulose fiber network usually present in PAD channels (we refer to these as paper channels)
can be advantageous or disadvantageous depending upon the application. There are three common
problems with paper channels. First, the mesh size in typical paper networks (∼10 µm) does not
allow unhindered flow of micrometer-scale objects, such as microbeads or bacteria (127). Second,
the high surface area of cellulose fibers can lead to a significant degree of nonspecific absorption.
Third, the rate of fluid flow through paper is retarded by the presence of the cellulose fibers (50).
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Paper-filled channel Hollow channel

Hydrophilic layer

Hollow area

Paper

Wax

Figure 3
Comparison of paper-filled and hollow channels. Wax-patterned boundaries define both types of channels.
The difference is that the cellulose matrix has been removed from the hollow channel. The bottom layer of
the hollow channel is rendered hydrophilic so that fluid can flow by capillary action. Figure adapted with
permission from Reference 50.

All three of these deficiencies can be resolved by simply removing the paper within a channel
(Figure 3).

The fabrication of hollow channels is very simple and involves patterning a paper substrate
with wax to define the channel network and then removing the cellulose content from the channels
using a razor blade or laser cutter. To ensure capillary flow, however, it is also necessary to provide
a hydrophilic wall within the channel (50). If all four walls are impregnated with wax or another
hydrophobic substance, then a pump is required for fluid flow (128).

We recently developed specific methods for creating hollow channels and also described some
of their characteristics (13, 50). For example, their flow rate can be controlled by balancing capillary
and pressure forces (50). Indeed, the pressure resulting from even a single drop of liquid (∼10 µL)
is sufficient to induce fast, laminar flow through hollow channels. Moreover, the flow rate in hollow
channels is typically about sevenfold higher than in conventional paper channels (50). Researchers
have taken advantage of hollow or open channels to detect small molecules (12, 13, 50), metal ions
(102), the toxin ricin (7), DNA (6), and bovine serum albumin (50).

4. CONTROLLED FLUID ACTUATION AND MANIPULATION

There are numerous detection strategies that require sequential addition of reagents, timed incu-
bation, mixing, washing, or a combination thereof. These are, of course, routine operations for
large-scale laboratory instruments and even for plastic and glass microfluidic devices, but until just
a few years ago they were unachievable in PADs. In this section, we describe recent approaches
for overcoming the obstacles associated with integrating these types of sophisticated operations
into simple paper devices.

4.1. Slipping

Glass slip chips were first developed in 2010 by Ismagilov and coworkers (129), and in 2013 our
group introduced analogous paper devices called SlipPADs (54). Later, Pollock and colleagues
(55) reported an essentially identical device called a Paper Machine. The latter two innovations
achieve controlled fluid manipulation, including timed delivery of reagents and timed incubation,
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Step 1

Top view Side view

Slip

Step 2

Slip

Slip

Slip

Step 3

Figure 4
Schematic illustrations outlining the operation of a slipping paper analytical device (SlipPAD) for parallel
fluid manipulation. This SlipPAD consists of two wax-patterned layers. Black dashed lines in the top views
highlight the bottom layers and their patterned fluidic channels and reservoirs. Figure reprinted with
permission from Reference 54.

by slipping one sheet of wax-patterned paper into alignment with another. The SlipPAD is par-
ticularly versatile in this regard, because it can be used for high-throughput parallel reactions or
for sequential addition of multiple reagents.

Figure 4 is a schematic illustration showing the operation of a simple SlipPAD our group
devised for generating calibration curves and performing concurrent assays. In Step 1, colored
reagents are loaded into defined channels, and then in Step 2 the slip layer is moved so that an
array of 285 paper wells is simultaneously loaded with the reagent. In Step 3, the paper wells are
isolated from the filling channels. The SlipPAD approach has also enabled controlled movement
of reagents at the time of need in biosensing applications (4, 6, 7, 107).

4.2. Channeling

The strategic arrangement of paper channels provides a means for controlled delivery of pre-dried
reagents and increased assay automation on PADs (1, 2, 33, 98, 130–132). In the case of Figure 5,
for example, channel length controls the timing of reagent delivery to the reaction zone for a
malaria assay. Specifically, detection antibodies labeled with gold nanoparticles, washing buffer,
and gold enhancement solution were predried on the individual timing channels. By simulta-
neously applying fixed volumes of sample to each of the three fluid application zones, the predried
reagents were rehydrated and delivered by fluidic wicking to the test and control lines. In Figure 5,
the contents of the shortest (far right) channel (containing gold-labeled detection antibodies) were
first to reach the test and control lines, followed by the wash solution from the middle channel and
the gold enhancement solution from the far left channel. This judicious arrangement of channels
is advantageous, because it provides a simple way to complete multiple assay steps with minimal
user intervention.

www.annualreviews.org • New Functionalities for Paper-Based Sensors 4.7

Changes may still occur before final publication online and in print

A
nn

ua
l R

ev
. A

na
l. 

C
he

m
. 2

01
6.

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
T

ex
as

 -
 A

us
tin

 o
n 

05
/1

7/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



AC09CH04-Crooks ARI 22 March 2016 11:50

Gold
enhancement

solutions

Gold-labeled
detection
antibody

Test

(Wash)

Control

1 cm

Figure 5
Schematic illustration of a 2D paper network for assaying Plasmodium falciparum histidine-rich protein 2
(PfHRP2). Text labels and colored dots indicate the location of each reagent. Controlled delivery of reagents
and wash buffer to the detection zone is achieved by varying the channel length. The red drop indicates the
addition of the sample, and the blue drops represent buffer. Figure reprinted with permission from
Reference 1.

4.3. Delaying

An alternative method for timed delivery of reagents on PADs is the use of a fluidic delay, such
as a one-way fluidic delay switch (51), shunt (133), or dissolvable reagent (134), that slows or
temporarily inhibits capillary flow. For example, Fu and coworkers (133) integrated an absorbent
sink into a PAD channel with the intent of slowing capillary flow by absorbing some of the fluid.
Additionally, Phillips and coworkers (8, 47, 52) developed a novel detection strategy, wherein an
analyte converts a predried hydrophobic blocking material in the channel to a hydrophilic form
that facilitates flow. The analyte concentration is either directly or inversely proportional to the
additional time required for the analyte to flow from the inlet to the outlet in comparison to a
reference channel.

4.4. Switching

The manipulation of flow in 3D PADs can also be achieved using a fluidic switch that initiates flow
on demand. The switching function can be achieved by using a fluidic diode (135), a physically
moveable paper flap that acts as a valve (38), or a press-and-flow button (3). For example, the
press-and-flow button (Figure 6) can be pressed to initiate flow at the discretion of the user.
Specifically, in this example, a stylus is used to press the single-use “on” button, which activates a
connection between two paper channels that were previously separated by a hollow, hydrophobic
gap. Whitesides and coworkers (3) initiated flow with a single-use “on” switch to detect glucose,
proteins, ketones, and nitrite in artificial urine.

4.5. Mixing

Fluid mixing is an important operation for many types of assays. This is because flow in hollow and
paper channels is generally laminar (50, 136). Accordingly, mixing of fluidic streams occurs only
by diffusion and is, therefore, slow. Only two examples have thus far been published to address
the need for mixing. In one case, Yager and coworkers (33) demonstrated a batch mixer on an
immunoassay card by using an air permeable vent that allowed air bubbles into the mixing chamber
to induce convection. Yeo and coworkers (137) accomplished uniform mixing on a PAD using
surface acoustic wave energy. There is clearly a need for more work in this area.
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5 mm

Paper

Photoresist

1 mm TapeGap GapPaper

Blue dye

Compressed
paper

Compressed
paper

a

b

c

d

Figure 6
Top view and cross sections of a channel containing a fluidic “on” button for use with a programmable paper
analytical device constructed of paper and tape. (a) A fully assembled device; the cross-sectional view is
obtained by cutting the device along the dashed line in the top view. (b) The device shown in panel a after
adding 10 μL of aqueous blue dye to the left side of the channel. (c) The device in panel b after compressing
the top layer of paper with a ballpoint pen to connect the gap. (d ) The device shown in panel c after the dye
has flowed past the fluidic “on” button. Figure reprinted with permission from Reference 3.

5. NANO- AND MICROSIZED OBJECTS

Nano- and microsized objects can improve analyte detection in PADs in several important ways.
First, recognition agents, such as antibodies or aptamers, can be anchored to mobile particle sur-
faces, leading to a high number of recognition elements compared to planar surfaces. Accordingly,
these nano- and microsized surfaces provide higher binding efficiencies for solution-phase targets
due to their increased binding capacity (138). Second, the speed of target binding can be enhanced
on particles, compared to stationary surfaces, due to their mobility. Third, particles can be used
to amplify detection signals on PADs, thereby eliminating the need for enzymatic amplification.

Over the past few years, there have been many reports of the use of nanoparticles for colori-
metric (1, 33, 35, 39, 63, 69, 74, 75, 79, 81, 84, 139–141) and electrochemical (4–7, 10, 35, 51,
61, 62, 102, 142, 143) detection on both 2D and 3D PADs. Nanotubes, -rods, or -wires com-
prised of carbon (60, 61, 87–89, 91, 102, 111, 113), zinc oxide (96), gold (86, 142), platinum (144),
nickel (144), or copper (144) have been integrated into paper-based sensors to enhance detection.
Microsized objects that have been used with PADs include magnetic and nonmagnetic microbeads
(45) and microcapsules (145, 146).
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a

b

Separation zone Separation zoneDetection zone

Figure 7
Top-view photographs of a dumbbell-shaped paper analytical device (PAD) for whole blood separation.
(a) The device prior to the addition of blood; the arrows indicate the location of blood filters and the
direction of flow. (b) The PAD after the addition of blood. The filters exclude the red blood cells while the
plasma travels to the electrochemical detection zone at the center. Figure reprinted with permission from
Reference 32.

6. FILTRATION AND SEPARATION

The properties of chromatography paper provide a natural avenue for filtration and separation on
PADs, as has been demonstrated in experiments involving molecules (34, 147) and viruses (100).
However, chromatography paper is not effective for removing interferences, such as blood cells.
Therefore, detection in blood samples on PADs requires a separation membrane (15–17, 32, 33,
49, 65). For example, a dumbbell-shaped electrochemical PAD (Figure 7) quantitatively assayed
glucose in blood plasma that was isolated from whole blood using a membrane (32). In Figure 7a,
the separation zones contain blood separation membranes, whereas the detection zone contains
chromatography paper overlaid onto a three-electrode electrochemical cell. The operation of the
device involves depositing a sample of whole blood onto the two separation zones (Figure 7b).
The membranes trap the red and white blood cells while the blood plasma continues to flow to-
ward the detection zone. The symmetrical movement of blood plasma toward the central reservoir
ensures uniform flow over the electrodes. In this PAD, glucose was detected amperometrically
using a commercial Prussian blue–modified, screen-printed carbon working electrode that mea-
sured the amount of peroxide resulting from the reaction between glucose and glucose oxidase.

More highly resolved separations on PADs can be achieved using electrophoresis (148, 149).
For example, our group demonstrated the separation of proteins using a low-voltage oPAD elec-
trophoretic device (oPAD-Ep) (148). The separation channel in the oPAD-Ep was constructed by
paper folding (origami) and was specifically designed to require only low voltages. We anticipate
that active separation components, such as the oPAD-Ep, will eventually be integrated into more
complex, multifunctional PAD designs in the future.

7. EXTRACTION AND CONCENTRATION

Additional sample processing is often required when sensing in realistic sample matrices, such
as blood, serum, natural waters, or urine. Incorporating extraction or preconcentration functions
into PADs can lead to new applications, lower limits of detection (LODs), shortened assay times,
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Figure 8
A 3D illustration of a NoSlip device. The magnetic microbead–supported antibody sandwich (left) is injected
into the NoSlip (right). The magnetic microbeads are concentrated at the detector electrode via a magnet
(inset), and the silver nanoparticle labels amplify the electrochemical signal.

removal of matrix effects, and device autonomy. An impressive literature focused on sample pro-
cessing has emerged within the last few years, addressing enrichment (150), extraction (48, 136),
preconcentration (75, 151–154), and magnetic concentration (4). For example, our group reported
on a PAD (known as the NoSlip) that utilizes magnetic concentration of magnetic microbeads
(Figure 8) within a hollow channel (14). Specifically, a magnet is positioned directly above the
working electrode, allowing for preconcentration of magnetic microbeads functionalized with
specific capture agents. In the presence of the target, antibody-functionalized silver nanoparticle
labels are co-located with the microbeads at the electrode. This provides a convenient means for
detection and amplification of the target. In addition to concentrating the silver nanoparticle labels
at the electrode, subsequent anodic stripping voltammetry provides a second level of concentra-
tion. These sample concentration steps lead to a LOD of 2.1 pM for a model complex in a urine
matrix (14).

8. AMPLIFICATION AND ENHANCEMENT

By incorporating amplification and signal enhancement into PADs, lower LODs, tunable dynamic
ranges, and higher sensitivities can be achieved within shorter timeframes. Signal amplification
has been demonstrated on PADs through the use of enzymes, nanoparticles, capacitors, and poly-
merization, all of which are described in this section.

8.1. Enzymes

The most common method of signal amplification involves the use of enzymes, which act on a
substrate molecule to produce a color change or electrochemically active redox molecule. With
colorimetric readout, enzymes have been used on PADs to detect antibodies (116), bacteria (64),
cells (99), heavy metals (77), small molecules (including sugars, acids, oxons, and organics) (42,
72, 82, 86, 105, 141, 155), and proteins (17, 86). There has also been some work on improving
the long-term stability of enzymes stored on PADs (145, 146). Enzymes have also been used on
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Figure 9
(a–d ) Photographs of an origami paper analytical device outfitted with an on-device supercapacitor for signal
amplification. (a,b) The device is constructed by origami folding. (c) The folded device is clamped to a circuit
board with a binder clip. (d ) The clamped device is placed into a cassette and connected to a digital
multimeter. (e) Circuit diagram of the electronic setup. Figure adapted with permission from Reference 51.

PADs for electrochemical detection of biomarkers (9–11, 60, 61, 113), heavy metals (108), and
small molecules (including sugars and toxins) (5, 108).

8.2. Nanoparticles

A particularly advantageous amplification approach involves the use of metal nanoparticles as
charge carriers (4) or catalysts (1, 98, 131) for electrolytic or electroless deposition, respectively.
In comparison to enzymes, there are two main advantages to using nanoparticles for amplification.
First, there are many straightforward methods known for immobilizing recognition elements (e.g.,
antibodies or DNA) onto nanoparticles. Second, nanoparticles do not require long reaction times
or have limited stability, which are common problems with enzymes. As discussed in the previous
section, our group has shown that silver nanoparticles can be detected on PADs in the high
femtomolar (4) to low picomolar (7, 14) range, which is well matched to many biomarkers.

8.3. Capacitors

A capacitor can be coupled with a PAD fluidic network to amplify electronic signals by storing
and then releasing charge to achieve gain (35, 45, 51, 156). For example, Huang and coworkers
(51) fabricated a capacitor by drawing thin film graphite electrodes with a pencil and dipping
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the electrodes in a sulfuric acid and polyvinyl alcohol gel electrolyte. Figure 9 demonstrates the
origami folding (Figure 9a–b) and compression (Figure 9c) of the device, along with the cassette
into which the oPAD is inserted (Figure 9d ). An on-device fluidic delay switch controls the
actuation of the capacitor (Figure 9e). In the presence of target DNA, chemically modified gold
nanoparticle labels participate in a photoelectrochemical process that results in the supercapacitor
being charged. The PAD was able to detect DNA at low femtomolar concentrations by utilizing
a sandwich assay.

8.4. Polymerization and Depolymerization

Kang and coworkers (11) showed that a polymerization reaction could be used to significantly am-
plify a binding event on a 2D PAD. Specifically, target capture triggered a radical polymerization
reaction, and the resulting polymer provided multiple binding sites to enhance the signal resulting
from a standard electrochemical enzyme-linked immunosorbent assay (ELISA). The ELISA was
carried out by sequential addition of antibodies, a blocking protein, and polymerization reagent,
with thorough washing between each addition. Using this method, an LOD of 10 pg/mL was
achieved for detection of cancer biomarkers.

Depolymerization has also been used to amplify signals. For example, Phillips and coworkers
showed that an enzyme target could be detected in the low- to mid-femtomolar range using very
clever chemistry and a 3D PAD (8). The target concentration was determined by measuring the
time required for depolymerization of a hydrophobic gate arising from the presence of peroxide
generated during detection.

9. CONCLUSIONS AND OUTLOOK

The movement toward smarter paper platforms outfitted with all device components necessary
for sophisticated sensing chores is quickly becoming a reality. Goals for the coming years include
further simplification of design and construction, integration of new functions such as separations
and preconcentration, and minimization of user intervention. At the present time, a number
of specific problems require attention. These include adding on-board storage of reagents and
ensuring their stability; figuring out how to efficiently resolvate those reagents at the time of need;
eliminating nonspecific adsorption; and purifying matrices, such as blood, prior to analysis. All of
this needs to be accomplished without introducing too much cost, or the advantage of using paper
as a platform is lost.

A few other important points not discussed in detail thus far should be mentioned. If paper
sensors are to be used in the developing world or by the lay public in the developed world, then
either visual readout or cheap, foolproof electronic readers are required. The obvious choice for
the latter is cell phones, but how exactly these will be connected to the sensors, how the sensors will
be powered, and how wireless communication of results will be secured remain open questions.

At this stage in their development, it is difficult to say what commercial paper-based sensors
are going to look like in four or five years. It is certain, though, that individuals will need to take
more control over their own health care needs in the coming years. Home management of chronic
disease is a good example. In the United States, this is, in part, a consequence of the Affordable
Care Act, which has added millions of newly insured people to the health care system without a
corresponding increase in the number of doctors. In many parts of the developing world, national
health care systems either do not exist or are so underfunded that they might as well not exist. In
both cases, the ability of an individual to routinely check his or her biomarkers and transmit the
results wirelessly to distant clinics will be immensely valuable.
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Two final points should be mentioned. First, inexpensive personal diagnostic devices will be
able to provide early warning of massive contagions, such as the Ebola outbreak of 2014, as well
as information about how such diseases spread. Second, lifetime testing by individuals, which
provides personal baselines for key biomarkers, may lead to early detection of cancer and other
deadly diseases.
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