Efficient Electrocatalytic Oxidation of Formic Acid Using Au@Pt Dendrimer-Encapsulated Nanoparticles

Ravikumar Iyyamperuma, Liang Zhang, Graeme Henkelman, and Richard M. Crooks

ABSTRACT: We report electrocatalytic oxidation of formic acid using monometallic and bimetallic dendrimer-encapsulated nanoparticles (DENs). The results indicate that the Au147@Pt DENs exhibit better electrocatalytic activity and low CO formation. Theoretical calculations attribute the observed activity to the deformation of nanoparticle structure, slow dehydration of formic acid, and weak binding of CO on Au147@Pt surface. Subsequent experiments confirmed the theoretical predictions.

In this Communication we show that electrochemically synthesized nanoparticles consisting of a 147-atom Au core and a Pt shell (Au147@Pt) facilitate the direct oxidation of formic acid to carbon dioxide. Specifically, experiments and first-principles calculations show that ~2-nm-diameter Au147@Pt dendrimer-encapsulated nanoparticles (DENs) undergo a structural distortion that suppresses formation of adsorbed CO compared to Pt-only DENs. This finding is significant, because it represents an unusual case in which a well-defined structural deformation of a very small nanoparticle results in a dramatic improvement in catalytic performance.

Formic acid is used as a substitute fuel for hydrogen in proton exchange membrane fuel cells (PEMFCs), because oxidation of hydrogen and formic acid occurs at similar thermodynamic potentials. Electro-oxidation of HCOOH to CO2 on Pt electrocatalysts occurs via two mechanisms: (1) through formation of a reactive intermediate (direct oxidation pathway), and (2) through formation of COad and subsequent oxidation of COad to CO2 (indirect oxidation pathway). The second pathway is problematic, because COad poisons the Pt surface. However, it has been shown that the presence of Au can improve the CO tolerance of Pt, and hence its catalytic performance. For example, Xu and co-workers found that Au@Pt nanoparticles having submonolayer Pt shells exhibit improved electrocatalytic activity for formic acid oxidation due to specifically engineered electronic interactions between the two metals. An alternative to improving CO tolerance is simply to avoid CO altogether. For example, Masel and co-workers found that carbon-supported Pd is highly active for formic acid oxidation, because it favors the direct oxidation pathway. However, Pd/C suffers significant loss in activity during formic acid oxidation due to slow adsorption of CO-like intermediates, bridge-bonded formate, perchlorate, and other anions.

The DENs in this study were synthesized, and their structure characterized, using methods we previously reported. Briefly, Pt147 DENs were synthesized by adding 147 equiv of K2PtCl4 to a 2.0 μM aqueous solution of a sixth-generation, hydroxyl-terminated poly(amidoamine) dendrimer (G6-OH). The Pt2+ was allowed to complex with the dendrimer for 3 days, and then a 10-fold excess of NaBH4 was added to reduce the G6-OH(Pt2+) precursor to G6-OH(Pt147) DENs. A similar procedure was used for the synthesis of Au147 DENs, except the reduction was initiated almost immediately after addition of HAuCl4 to avoid competitive reduction by the hydrosol of the dendrimers. Pt and Au DEN-modified electrodes were prepared by sonicating an aqueous solution, containing 20% isopropyl alcohol, with 2 mg mL−1 of Vulcan EC-72R carbon for 5 min, and then drop-casting 4.0 μL of the resulting ink onto a freshly polished glassy carbon electrode (GCE). The electrode was then dried at room temperature. Following a method pioneered by Adzic and co-workers and our previous experimental procedure, Au147@Pt DENs were synthesized by electrochemical underpotential deposition (UPD) of Pb onto Au147 DENs, followed by galvanic exchange with PtCl4−. Specifically, Au147 DENs were immobilized on a GCE, and then a monolayer of Pb was added to the Au core by UPD from a N2-saturated aqueous solution containing 1.0 mM Pb(NO3)2 and 0.10 M HClO4. Next, 10.0 mL of a 1.0 mM K2PtCl4 solution was added to initiate galvanic exchange of Pb for Pt. The resulting DENs were then characterized by UV–vis spectroscopy, transmission electron microscopy, and electrochemical methods (Supporting Information) and found to be consistent with our previous findings.

Figure 1 shows cyclic voltammograms (CVs) for formic acid oxidation using Au147, Pt147, and Au147@Pt DEN-modified GCEs in 0.10 M HClO4 containing 0.10 M HCOOH. The Au147 DENs do not exhibit detectable activity for formic acid oxidation. In contrast, the Pt147 DEN-modified electrode reveals two peaks at ~0.12 and 0.21 V (vs Hg/Hg2SO4) in the scan toward more positive potentials. These are attributable to the direct oxidation of HCOOH to CO2 and oxidation of COad generated by dehydration of HCOOH, respectively. The low ratio (2.8) of the current densities (jjjind and Table 1) for these two peaks indicates a substantial degree of indirect electrocatalytic oxidation of formic acid on Pt147 DENs. Upon scan reversal, a single peak is observed at ~0.24 V, which corresponds to direct oxidation of HCOOH to CO2.

Received: January 29, 2013
Published: April 8, 2013
the exception of the peak potential on the reverse scan, which is shifted positive by about 60 mV, these peak potentials are in nearly the same positions as those obtained using a macroscopic polycrystalline Pt electrode under the same experimental conditions (Supporting Information).15

The Au147@Pt DEN electrocatalysts display superior catalytic performance compared to the Pt147 DENs and a bulk, polycrystalline Pt electrode. This is demonstrated by the red CV shown in Figure 1. There are four striking differences between this CV and the Pt-only CVs (Pt147 DENs and the bulk, polycrystalline Pt electrode, Figure SS). First, the peak at ~0.2 V, which corresponds to oxidation of COads, is nearly absent on the Au147@Pt DENs. The fact that very little COads on the bimetallic DENs indicates that formic acid is oxidized almost exclusively via the direct pathway on this electrocatalyst. Second, the Au147@Pt electrocatalyst exhibits an onset potential (defined here as the potential at which the current density = 0.10 mA/cm²)17 for formic acid oxidation of ~0.54 V, which is 0.14 and 0.20 V lower than for Pt147, and Au@Pt DENs and a polycrystalline Pt electrode, respectively. Third, the maximum current density (j_p) for direct formic acid oxidation is substantially higher for the Au147@Pt DENs compared to either Pt147 DENs or the bulk, polycrystalline Pt electrode (note that the currents in Table 1 and Figure 1 are normalized to the electrochemically active surface areas of Pt). This level of catalytic performance is also substantially better than that observed using Pd black on carbon (Table 1).18 The increased activity of the Au147@Pt DENs results from the desirable electronic properties of the core@shell structure. Fourth, the peak current for the forward (positive-going) scan for the Au147@Pt DENs is higher than for the reverse scan, which is the opposite of what is observed for the Pt147 DENs and for a bulk polycrystalline electrode (Figure SS). This is a consequence of a decrease in CO poisoning at the more negative potentials and differences in the rate of oxide formation and subsequent reduction at more positive potentials.

As mentioned previously, one of the most distinctive features of formic acid oxidation on Au147@Pt DENs is near-elimination of the indirect formic acid oxidation pathway. We hypothesized that the reduction in CO poisoning could arise from either of the following phenomena: (1) slowed dehydration of HCOOH, which eliminates formation of CO, or (2) weakening of the CO binding energy. With regard to the first hypothesis, Yancey et al. proposed a deformed partial shell (dps) model for Au147@Pt DENs.12 These materials, which we denote as Au@Pt_dps, are the same as those used in the present study (Figure 2). In this model, a surface distortion was observed during molecular dynamics simulations in which the Pt-covered (100) facets sheared into a diamond (111) structure. This distortion may play an important role in the rate of dehydration of HCOOH to CO on the DENs, because formation of CO during formic acid oxidation on Pt(111) single-crystal electrodes is not favorable.19,20

The second hypothesis was tested using DFT to calculate the CO binding energies on Pt147, the Au@Pt_dps model, and a complete shell model of Au@Pt (Au@Pt_bsh). These three structures, showing possible CO binding sites, are provided in Figure 2.

![Figure 1](image1.png)

Figure 1. CVs for formic acid oxidation of Au147, Pt147, and Au147@Pt DEN-modified GCEs in a N2-saturated aqueous electrolyte solution containing 0.10 M HClO4 and 0.10 M HCOOH. The scan rate was 50 mV/s, and the geometric area of the GCE was 0.071 cm². For the Pt147 and Au147@Pt DENs, the current axis is normalized to the electrochemically active surface area of Pt as measured by H UPD. For the Au147 DENs, the current is normalized to the electrochemically active surface area of Au as measured by reduction of the Au oxide peak.

![Figure 2](image2.png)

Figure 2. Optimized structures for (a) the Pt-only DEN model (Pt147), (b) the complete shell model (Au@Pt_bsh), and (c) the deformed partial-shell model (Au@Pt_dps), which is equivalent to Au@Pt92. The superimposed numbers represent possible CO binding sites for each model.

| Table 1. Electrochemical Parameters for Formic Acid Oxidation Derived from Figure 1 |
|--|----------------|----------------|----------------|----------------|
| **onset potential (V)** | **peak potential (V)** | **current density (mA/cm²)** | **ratio j_p/d_j_p/d** |
| Pt (polycrystalline) | −0.34 | −0.13 | 0.15 | 1.7 |
| G6-OH(Pt147) | −0.40 | −0.12 | 0.21 | 0.36 | 0.13 | 2.8 |
| G6-OH(Au147@Pt) | −0.54 | −0.20 | 0.20 | 1.91 | 0.07 | 27.3 |
| Pd black | −0.44 | 0.06 | 1.35 |

"The onset potentials are defined as the potential corresponding to formic acid oxidation at a current density of 0.10 mA/cm².17 The potentials corresponding to the maximum currents for the positive-going scans in Figure 1, j_p/d and j_p/d, are the peak current densities corresponding to E_p/d and E_p/d, respectively. These values are normalized to the true area of Pt determined by hydrogen UPD. The current density is also normalized for the true surface area of Pd."
Communication

Figure 2, and the corresponding CO binding energies are listed in Table 2. The results indicate that Au@Ptcs binds CO more strongly than Pt147, which is in agreement with results from previous DFT calculations on bulk model surfaces and with temperature-programmed desorption experiments. Importantly, however, the binding energy calculations reveal significant weakening of CO binding to Au@Pt dps. These CO binding trends can be interpreted in terms of the average Pt−Pt bond lengths in the different models: Au@Pt147 2.79 Å, Pt147 2.76 Å, and Au@Pt dps 2.65 Å. The compression of the Pt−Pt bond in Au@Pt dps leads to weaker binding of CO on the Pt surface compared to either Pt147 or Au@Ptcs DENs.

On the basis of the foregoing discussion, we conclude that weakened CO binding and slow dehydration of HCOOH on the Au147@Pt surface account for reduced CO poisoning and the enhanced activity of this catalyst for formic acid oxidation. To test these conclusions experimentally, two different CO oxidation experiments were performed using GCEs modified with Pt147 and Au147@Pt DENs (Figure 3). For the first experiment, the DEN-modified electrodes were each immersed in a solution containing 0.10 M HClO4 and 0.10 M HCOOH for 5 min at open-circuit potential (OCP). This results in chemisorption of CO arising from dehydration of HCOOH. The electrode was then removed from the formic acid solution, washed, and placed in a fresh solution containing only N2-purged 0.10 M HClO4, and then CVs were obtained. In the case of Pt147 DENs (Figure 3a), a broad peak is observed at ∼0.10 V during the first scan toward positive potentials. We attribute this peak to oxidation of COads. However, no corresponding peak for oxidation of COads is observed for the Au147@Pt DENs. These results indicate that dehydration of HCOOH to COads is slower on Au147@Pt DENs than Pt147 DENs, which is consistent with the calculations alluded to earlier.

The second experiment was carried out by immersing the DEN-modified GCEs in a CO-saturated aqueous 0.10 M HClO4 electrolyte solution for 10 min at −0.60 V (rather than at the OCP). These conditions result in formation of a strongly adsorbed monolayer of CO on the surface of the DENs. The electrolyte solution was then purged with N2 for 10 min, while maintaining the electrode potential at −0.60 V, to remove dissolved CO. Finally, CVs were obtained. For the Pt147-modified electrode, a large oxidation wave attributable to CO oxidation is observed at ∼0.20 V (Figure 3c). A similar peak, but shifted negative by about 100 mV, is observed for the Au147@Pt DENs (Figure 3d). This shift indicates that CO adsorbs more weakly to the bimetallic DENs, which, again, is consistent with the binding energies obtained from DFT calculations. Taken together, the experiments summarized in Figure 3 and the DFT calculations strongly suggest that the high catalytic activity and small extent of CO poisoning, revealed by the CVs in Figure 1, arise from both slow dehydration of formic acid and weak binding of CO on the Au147@Pt DENs.

In conclusion, we have shown that Au147@Pt DENs exhibit better electrocatalytic activity for HCOOH oxidation reaction than Pt147 DENs, a bulk, polycrystalline Pt electrode, and carbon-supported Pd black. DFT calculations provide an explanation for these findings that is fully consistent with the experiments. Specifically, the Au147@Pt DENs undergo a structural transition (Figure 2) that leads to both slower dehydration of formic acid and weaker binding of COads. Perhaps the most significant outcome of this work, however, is that there appear to be major structural differences between particles in the 1–2 nm size range of DENs, and the more commonly studied (and more experimentally tractable) nanoparticles having sizes >3 nm. This is likely due to the lower stability of the smaller particles, and thus their enhanced ability to deform in the presence of adsorbates and during catalysis. In forthcoming publications we will show that this is a rather
general result that deserves more attention than it has thus far received.

■ ASSOCIATED CONTENT

* Supporting Information
Detailed experimental procedures, TEM images and particle-size distributions, details of the DFT calculations, CVs for Pt147 and Au147@Pt DENs before and after formic acid oxidation, and CV of a bulk, polycrystalline Pt electrode in the presence and absence of formic acid. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
crooks@cm.utexas.edu; henkelman@cm.utexas.edu
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We gratefully acknowledge support from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Contract DE-FG02-09ER16090). R.M.C. also thanks the Robert A. Welch Foundation (Grant F-0032) for sustained support. The computational work was done primarily at the National Energy Research Scientific Computing Center and the Texas Advanced Computing Center. Finally, we thank Mr. David Yancey (UT-Austin) and Prof. Carol Korzeniewski (Texas Tech University) for helpful discussions.

■ REFERENCES

(9) Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. J. Power Sources 2002, 111, 83−89.