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Binding of protons and metal ions to dendrimers is investigated using a multishell model, in which concentric
binding sites are approximated by continuous and uniformly charged shells. The electrostatic interactions
among the shells are assumed to be the sole source of site-to-site interactions, and an analytical formula for
the total interaction energy, which includes Coulomb screening from mobile electrolyte ions, has been derived.
The formula permits numerical simulation of proton and metal-ion binding equilibria using two computational
methods. The first method is a statistical approach in which the partition function is simplified by a mean-
field approximation. The second method is derived by considering ion binding as a surface adsorption problem,
and the resulting binding isotherm is a Frumkin isotherm. In most cases, the two methods give nearly the
same results, but the isotherm method requires much less computation time. Proton binding as a function of
pH for an individual shell follows a trend very similar to that for the overall averaged binding. Selective
protonation of alternating shells, as observed for a previously described Ising model, is not observed in this
study; instead, proton binding becomes increasingly weak as one moves from an outer shell toward the center
of the dendrimer.

Introduction

Understanding the interactions between dendrimers and
various probe molecules is important not only for optimizing
existing applications of dendrimers but also for expanding the
role of dendrimers in new applications. Existing applications
that rely on controlled dendrimer-probe interactions include
extraction of metal ions or organic molecules into the dendrimer
interior, catalysis by dendrimer-encapsulated nanoparticles, and
controlled loading or release of drug molecules from dendrimer
hosts.1-6

Binding of small probe molecules to a polymer is often
difficult to model theoretically because (i) a polymer has many
degrees of freedom and therefore can assume numerous
configurations, (ii) several modes of probe binding may exist,
making it difficult to enumerate all configurations, and (iii) more
than one probe can bind to a single polymer, so probe-to-probe
interactions must be considered. However, Borkovec and Koper
(B&K) have shown recently that despite the aforementioned
difficulties, useful simulation results can be obtained for a
particular simple binding problem: namely, the protonation of
amine-containing dendrimers.7,8 Their model, referred to as the
“Ising model”,9 approximates proton-proton interactions by
considering only localized electrostatic repulsions, such as those
between nearest neighbors. Good results have been obtained
from this model for linear as well as dendritic polyamines. Since
a statistical method is used to implement the Ising model, it
requires evaluating a partition function that contains many
Boltzmann factors corresponding to all possible proton binding
configurations. As the number of binding sites in a dendrimer
increases, partition function calculation becomes more and more

difficult because of rapid increase in computation time. In
B&K’s Ising model where only nearest neighbor interactions
are considered, this difficulty can be overcome by using a
recursive renormalization procedure.7 However, it is not clear
if the procedure is applicable to more complicated cases such
as when next-nearest interactions are included or when ad-
ditional binding moieties such as metal ions are considered.

In contrast, we adopted a shell-like dendrimer model to
estimate site-to-site interactions. Dendrimer binding sites are
grouped into concentric spherical shells, and each shell has a
continuous and uniform charge distribution. The main advantage
of this shell geometry is that an analytical expression for the
total interaction energy can be obtained even when the Coulomb
screening of mobile ions is included.

We have employed two methods for calculating binding
properties of a shell dendrimer model. In the first method, we
simplify partition function calculation by using a mean-field
approximation reported earlier.9,10 In the second method, we
have considered dendrimer protonation from a slightly different
perspective. Instead of considering the whole dendrimer struc-
ture, which inevitably runs into the problem of statistically
evaluating numerous terms in a partition function, we focused
our attention only on one individual binding site. This approach
yields a binding isotherm that is similar in form to the Frumkin
adsorption isotherm.11 Using the isotherm approach to study
polymeric binding properties is not new, and Tanford has
detailed this subject in his famous monograph.12 The isotherm
method contains many approximations, but in some cases it
gives nearly the same results as those from the mean-field
statistical method. In addition, it requires much less computation
than any statistical method discussed so far because it does not
require partition function calculations. Decreasing the amount
of computation is critical for extending a theory to a wider range
of problems. For example, we are able to calculate the binding
behavior of a metal ion to a dendrimer molecule whereas this
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is almost computationally prohibitive for methods based on
statistical partition.

Results and Discussions

(1) Conventional or Macroscopic Approach to Metal-
Ligand Binding Equilibria. For a polymeric and polydentate
ligand L (electric charge is omitted here for simplicity and
generality), its binding equilibria can be understood if all the
equilibrium constants, often known as stability constants, are
known.13 The stability constant for species MkOHlHhL is

The quantities in [ ] are concentrations, and they should be
replaced with activities at high ionic strengths. As a first
approximation, we will ignore the activity coefficients.k, l, and
h can be thought of as thebinding numbersfor M, OH, and H,
respectively. Note that OH binds to a ligand only through a
metal ion already coordinated with the ligand. The hydroxyl
concentration [OH] does not appear in (1.1) because it is related
to proton concentration [H] by

where âw, the autodissociation constant of water, has been
absorbed intoâ(k,l,h) implicitly.13

Using these stability constants, we can write three sets of
material balance equations:

whereL0, M0, H0, andB0 are the total concentrations for L, M,
H (strong acid added initially), and OH (strong base added
initially), respectively,RL is the fraction of the free ligand, and
kh, lh, andhh are the average binding number per ligand molecule
for M, OH, and H, respectively. These variables are given by

It is clear that if all theâ(k,l,h) are known, then [M] and
[H], or pM and pH, can be solved using (1.4) and (1.5).
Searching solutions digitally in a two-dimensional parameter
space defined by [M] and [H] is relatively easy because both
fM and fH decrease monotonically as [M] or [H] increases.
Searching stops when bothfM and fH are zero.

A widely accepted method for determining stability constants
is potentiometric pH titration.13 In this method,L0, M0, andH0

are known to a very high precision, and pH is measured
continuously asB0 is gradually increased by titrating a strong

base into a sample solution. A complete set ofâ(k,l,h) are
guessed initially, and the pH, calculated using the aforemen-
tioned digital method, is compared with experimentally mea-
sured pH value. The sum of squared errors for all titration points
(ø2) is minimized through iterations to refine the initial guesses
for â(k,l,h). Although this method works very well for simple
polydentate ligands, it failed completely for dendrimers since
the number of possibleâ(k,l,h) is large, and an iterative
calculation for refiningâ(k,l,h) is too slow to be practically
useful. Even if this method is successful, it is still not very
informative because the connection between the macroscopic
stability constants and the structures (geometrical as well as
chemical) of dendrimers is not obvious. In contrast, such a
connection arises naturally in a statistical method.

(2) Statistical Approach to Metal-Ligand Binding Equi-
libria. Accurate statistical solutions to equilibrium problems can
be obtained if all possible microstates are included in partition
function calculations.14 The partition functionP is simply the
sum of the Boltzmann factors for all microstates:

where T is the absolute temperature,kB is the Boltzmann
constant,âT is the inverse of thermal energy, andµm is the
binding free energy of microstatem with respect to a reference
microstate (often chosen to be the state of a free ligand L).

To obtain more specific results, we make the following
assumptions about the ligand which is either a poly(amidoamine)
(PAMAM) or a poly(propylene imine) (PPI) dendrimer. First,
each amine functional group can be taken to form four types of
sites: vacancy site, H binding site, M binding site, or MOH
binding site. In this study, we assume further that each metal
center can bind a maximum of one OH group. This restriction
can be removed but it will make partition function calculation
slightly more complicated. Second, M and H bind competitively;
thus, there is no binding site where both M and H coexist. In
addition, one H binds only one amine group whereas one M
bindsγM coordinating amines. If the maximum binding number
for H is h0, then competitive binding implies that the maximum
binding number for M or MOH will bek0, and

With the above assumptions, the binding free energy for a
particular microstate becomes

where

Here,s is a binding-site index, andµM
o , µMOH

o , andµH
o are the

intrinsic binding free energies at the sites designated in the
subscript. An intrinsic binding energy, or the free energy
measured when only one binding site per dendrimer molecule
is occupied, can be estimated from the stability constant of a
structurally similar ligand containing only one binding site.9 For
example,

â(k, l, h) )
[M kOHlHhL]

[M] k[H]h-l[L]
(k g 0, l g 0, h g 0) (1.1)

âw ) [H][OH] ) 10-13.78 (at 25°C) (1.2)

fL ) L0 - RL
-1[L] ) 0 (1.3)

fM ) M0 - [M] - khL0 ) 0 (1.4)

fH ) H0 - B0 - [H] + âw[H]-1 - (hh - lh)L0 ) 0 (1.5)

RL )
[L]

L0

) ( ∑
klh

â(k,l,h)[M] k[H]h-l)-1

(1.6)

kh ) RL∑
klh

kâ(k,l,h)[M] k[H]h-l (1.7)

lh ) RL∑
klh

lâ(k,l,h)[M] k[H]h-l (1.8)

hh ) RL∑
klh

hâ(k,l,h)[M] k[H]h-l (1.9)

P ) ∑
m

exp(-
µm

kBT) ) ∑
m

exp(-âTµm) (2.1)

h0 ) γMk0 (2.2)

µm ) µo(k,l,h) + ∆µm (2.3)

µo(k,l,h) ) (k - l)µM
o + lµMOH

o + hµH
o (2.4)

∆µm )
1

2
(∑

s

k-l

∆µM
s + ∑

s

l

∆µMOH
s + ∑

s

h

∆µH
s ) (2.5)
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whereâH is the intrinsic stability constant for the H binding
site andKH its intrinsic acid dissociation constant. Similarly,

If more than one binding sites are occupied, the binding energy
per site will deviate from the intrinsic energy by an amount of
∆µ due to site-to-site interactions. The1/2 factor in (2.5) is
necessary to avoid counting all pairwise interactions twice.
Independent of the mechanism of these interactions, different
microstates generally give different∆µ because a particular
binding site will experience different microenvironments (spatial
or chemical configurations) in different microstates. It is clear
that without further simplification, partition function calculations
will not be tractable because even for moderate-sized dendrim-
ers, such as a fourth generation PAMAM dendrimer, the total
number of microstates is astronomical. To get around this
problem, we assume that∆µ is only a function of stoichiometry
(i.e., k, l, h) but does not depend on the spatial configurations
of the binding sites. This assumption is essentially the same as
the mean-field approximation described by Borkovec and
Koper.9,15 Equation 2.1 now becomes

where

P(k,l,h) is the contribution to the total partition function from
all the microstates with a (k,l,h) stoichiometry, and the
degeneracy factorΩ(k,l,h) is just the total number of such
microstates:

The upper summation limits in (2.9) appear peculiar because
k, l, h indexes are not completely independent of each other. In
addition, (2.13) is affected similarly. The first binomial coef-
ficient in (2.13) gives the number of ways one can fillk0 sites
with k metal ions. The third factor is also binomial since
competitive binding leaves onlyh0 - γMk sites available for
the proton. Finally, the second binomial factor gives the number
of ways one can add tok occupied metal binding sites withl
hydroxyl ions. The above accounting scheme implies that there
is only one way to assemblek0 metal binding sites usingh0

amine functional groups: an assumption obviously not valid if
amine groups are completely free to choose which metal binding
site they belong. Fortunately, due to steric constraints, amine

groups that would bind to a common metal ion are likely to be
located within the same shell and on the same dendrimer
branch.1,16 This local binding arrangement suggests that any
correction factor to be applied to (2.13) will be small compared
to the magnitude of∆µ or to errors from other assumptions
such as the mean-field approximation. The correction factor is
not needed ifk is zero, such as in the case of dendrimer
protonation in the absence of metal.

SinceP(k,l,h) is proportional to the probability of finding
species MkOHlHhL, we can write

where P(0,0,0)) 1 because the free ligandL has been chosen
as the zero-energy reference state. Expanding and rearranging
(2.14), we have

Comparing (2.15) with (1.1), we conclude

and it follows from (2.14)

Comparing (2.9) and (2.17) with (1.6), we obtain

The above results indicate that if the intrinsic binding constants
âM, âMOH, andâH, and free energy increase∆µ(k,l,h) can be
calculated, then all the macroscopic binding parameters (such
askh, lh, andhh) can be predicted, as we have shown in section 1.
However, unlike the results in section 1, the statistical method
described in this section allows us to link apparent binding
behaviors with the underlying chemical structures. For example,
the apparent macroscopic stability constantsâ(k,l,h) are now
nicely linked to the intrinsic binding constants. Furthermore,
∆µ(k,l,h) gives us a convenient entry point to study the nature
of site-to-site interactions.

(3) Adsorption Isotherm Approach to Metal-Ligand
Binding Equlibria. When implementing and optimizing com-
puter algorithms for calculating the partition function, we noticed
that as the number of binding sites (i.e.,k0, l0, h0) increases,
the partition function is often dominated by a very few terms
clustering near the (kh, lh, hh) index. In other words, most ligand
molecules in an ensemble have a stoichiometry not far away
from the average stoichiometry. This gives us a hint that the
binding problem can now be thought of as an adsorption
problem with the polymeric ligand acting as a surface with a
large number of binding sites but the sites only belong to a
very few distinctive types. For example, ifνH is the average
number of vacancy sites per ligand molecule for H binding,
then

[M kOHlHhL]

[L]
)

P(k,l,h)

P(0,0,0)
) P(k,l,h) (2.14)

[M kOHlHhL]

[M] k[H]h-l[L]
)

Ω(k,l,h)âM
(k-l)âMOH

lâH
h exp[-âT∆µ(k,l,h)] (2.15)

â(k,l,h) ) Ω(k,l,h)âM
(k-l)âMOH

lâH
h exp[-âT∆µ(k,l,h)]

(2.16)

P(k,l,h) ) â(k,l,h)[M] k[H]h-l (2.17)

P ) RL
-1 (2.18)

hh

νH

) âH′[H] ) BH (3.1)

exp(-âTµH
o) ) âH[H] ) 10pKH-pH (2.6)

exp(-âTµM
o ) ) âM[M] (2.7)

exp(-âTµMOH
o ) ) âMOH[M][H] -1 (2.8)

P ) ∑
k)0

k0

∑
l)0

k

∑
h)0

h0 - γMk

P(k,l,h) (2.9)

P(k,l,h) ) ∑
m

Ω(k,l,h)

exp(-âTµm) ) Ω(k,l,h) exp[-âTµ(k,l,h)]

(2.10)

µ(k,l,h) ) µo(k,l,h) + ∆µ(k,l,h) (2.11)

∆µ(k,l,h) ) 1
2
[(k - l)∆µM(k,l,h) + l∆µMOH(k,l,h) +

h∆µH(k,l,h)] (2.12)

Ω(k,l,h) ) ∑
m

Ω(k,l,h)

1 )(k0

k )(kl )(h0 - γMk
h ) (2.13)

5866 J. Phys. Chem. B, Vol. 106, No. 23, 2002 Sun and Crooks



whereBH is a symbol for notational simplicity andâH′ is a
binding constant.11 In the absence of site-to-site interactions,
âH′ is exactly the same asâH, the intrinsic binding constant
used earlier. Equation 3.1 is just one form of the Langmuir
adsorption isotherm, whereâH is independent of surface
coverage, orhh. When site-to-site interactions are present,BH′
will depend on the coverage of all types of sites, and (3.1) will
describe a Frumkin isotherm:11

where ∆µH(kh,lh,hh) should have the same functional form as
∆µH(k,l,h) (in (2.12)). Similar treatments for the M and MOH
binding sites result in

The numbers of vacancy sites forH and forM differ from each
other:

Recombining the above equations, we obtain

Like the statistical method, the isotherm method described
in this section also allows calculation of all the macroscopic
binding parameters (kh, lh, andhh) if the intrinsic binding constants
âM, âMOH, andâH, and free energy increase∆µ are given. In
addition,∆µ still serves as an important link for investigating
the nature of site-to-site interactions.

(4) Dendrimer Model for Calculating Electrostatic Inter-
actions. Numerical implementation of both the statistical and
the isotherm methods requires an explicit expression for∆µ.
Here, we will assume that electrostatic interaction energy is the
sole source for∆µ. To calculate ∆µ, we approximate a
symmetric dendrimer with concentric shells, each shell bearing
a charge specified by the binding stoichiometry and distributed
evenly and continuously over the shell surface (Figure 1). The
innermost core with radiusrC and dielectric constantεC is
assumed to be inaccessible to solvent or electrolyte although

setting rC to zero does not influence the final result signifi-
cantly.17 Beyond this innermost core, the rest of the dendrimer
structure occupies a region partially filled with an electrolyte
solution having a dielectric constant ofε. The fraction of volume
occupied by the electrolyte is assumed to beR. Outside the
dendrimer molecule, we have a region where the electrolyte
has a dielectric constant ofε0 and extends to infinity.

A general procedure for solving spherically symmetric∆µ
has been reported by Tanford, who used it to calculate the total
interaction energy of a solid sphere uniformly filled with
continuous charge.12 We could have used this solid sphere as a
dendrimer model; however, we selected the above shell model
for several reasons. First, the shell model is easier to solve
analytically than a solid sphere model, and sometimes even a
single shell can give results equivalent to those for a solid sphere.
Second, the shell model resembles the dendrimer structure more
closely because charge is partially quantized as discrete shells.
Finally, the shell model can be very flexible in coping with the
need for testing various structural models: e.g., the number of
shells can be adjusted conveniently by setting the charge on
some shells to zero, and the binding constants for individual
shells can be set independently.

According to the Debye-Hückel theory of electrolyte solu-
tions, mobile ions around a fixed charge produce an electric
potential that obeys the Poisson-Boltzmann equation:

whereκ-1 is the Debye length beyond which most of the electric
field from the fixed charge will be screened by the mobile ions.18

Following Tanford’s approach,12 we applied (4.1) to our model
shown in Figure 1 and arrived at an expression for the electric
potential at theλth shell:

wheree is the charge of an electron (positive value),rλ is the
radius of theλth shell,Λ is the total number of shells, and

is a Λ-dimensional vector denoting the overall charge config-
uration.f0 is an empirical factor that is to be used to adjust the
strength of site-to-site interactions. If a model is perfect, then

âH′ ) âH exp[-âT∆µH(kh,lh,hh)] (3.2)

kh - lh

νM

) âM′[M] ) BM (3.3)

lh

νM

) âMOH′[M][H] -1 ) BMOH (3.4)

âM′ ) âM exp[-âT∆µM(k,l,h)] (3.5)

âMOH′ ) âMOH exp[-âT∆µMOH(k,l,h)] (3.6)

νH ) h0 - γMkh - hh (3.7)

νM )
νH

γM
(3.8)

νH ) h0
1

1 + BH + BM + BMOH
(3.9)

kh ) k0

BM + BMOH

1 + BH + BM + BMOH
(3.10)

lh ) k0

BMOH

1 + BH + BM + BMOH
(3.11)

hh ) h0

BH

1 + BH + BM + BMOH
(3.12)

Figure 1. Dendrimer model for calculating site-to-site electrostatic
interaction energy. Sites are grouped into concentric charged shells.
As an example, only three charged shells and some branches are shown
here.

∇2U(r) ) κ
2U(r) (4.1)

Uλ(q) )
f0e

rλ
(xλAλ + yλBλ) (1 e λ e Λ) (4.2)

q ) {q1, q2, ...,qλ, ...,qΛ} (4.3)

Dendrimers Interactions with Charged Probe Molecules J. Phys. Chem. B, Vol. 106, No. 23, 20025867



f0 will be equal to 1. Other constants in (4.2) are unitless:

whereNAV is Avogadro’s number andI is the total ionic strength
in moles per liter. If we bring a charge ofzie from infinity to
shell λ, then the free energy increase due to pure electrostatic
interactions will be

Thus, in the above shell model,∆µ depends on a set ofqλ but
not explicitly on (k, l, h)λ. This expression is extremely useful
for providing numeric results for∆µ, which is required by the
mean-field statistical method and the adsorption isotherm
method.

It should be emphasized here that the equations presented in
sections 2 and 3 are intended for a dendrimer model containing
only a single shell. Nevertheless, it is straightforward to extend
those equations to describe models containing multiple shells.
For the statistical method, an extra summation index, or the

shell index, is needed in the expression for the partition function,
so (2.9) becomes

Unfortunately, the two summation indexes cannot be separated
because∆µ depends on the charge configuration of all the shells.
As a result, when metal ion binding is included, the total
computation time for a multishell model becomes impractical.
We have partially alleviated this problem by skipping some of
the Boltzmann factors in (4.21) if they are below a preset
threshold. This approach will be called statistical method II,
and its validity has been confirmed by comparing results to those
when no skipping (method I) was used.17

For the isotherm method, (3.10), (3.11), and (3.12) still hold
for each charged dendrimer shell. However, all theB factors
are now functions ofqj because∆µ is a function ofqj according
to (4.20). Combining these equations, we can express stoichio-
metric indexes (kh, lh, hh)λ as functions ofqj and obtain a charge
balance equation for each shell:

wherezM, zMOH, andzH are the charge of binding sites for M,
MOH, and H, respectively; and, as mentioned previously, we
have assumed in this work

Equation 4.22 representsΛ coupled nonlinear equations; thus,
Λ unknowns, i.e.,qj, can be solved if the intrinsic binding
constantsâM, âMOH, âH, and ∆µ are given. General methods
for solving coupled nonlinear equations do not always lead to
a complete set of converging roots.19 Fortunately, all fλ(qj)
decreases monotonically as anyqλ increases, and this makes it
easy for us to devise an efficient computer algorithm that
searches in aΛ-dimensionqj space. Solutions toqj are found
when all fλ(qj) reach zero.

(5) Numerical Results.Comparison of the Statistical and
Isotherm Methods.Computation time based on the isotherm
method is shorter than those based on the statistical method II
(Table 1), but the former is perhaps more crude because it only
deals with “an average dendrimer molecule” with averaged
proton and metal binding numbers. To find out how much error
this approximation will introduce, we compared the simulated
binding curves calculated using the above two computational
methods. The agreement is excellent if only proton binding is
considered.17 However, when metal binding is also included,
the metal binding constants in the isotherm method have to be
decreased slightly (about 0.5 logarithmic unit) in order to match
the curve from the statistical method.

Characteristics of a Multishell Dendrimer Model.We have
seen that, in the statistical approach, a binding site is an averaged
site because it experiences only a mean field. The isotherm
approach goes a step further, using only a representative
molecule with averaged binding numbers. These underpinning
assumptions make us wonder if a multishell model is really
necessarywhen sites of the same kind in different shells haVe
the same intrinsic binding constant. A direct way to answer
this question is to compare the results with a single-shell model

xλ ) x1 + ∑
λ′)2

λ

qλ′Bλ′/Rλ′ (λ g 2) (4.4)

yλ ) y1 - ∑
λ′)2

λ

qλ′ Aλ′/Rλ′ (λ g 2) (4.5)

x1 )
QΛ(C0B1 - A0D1) - q1A0DC

CC(C0B1 - A0D1) - DC(C0A1 - A0C1)
(4.6)

y1 )
q1A0CC - QΛ(C0A1 - A0C1)

CC(C0B1 - A0D1) - DC(C0A1 - A0C1)
(4.7)

QΛ ) DC ∑
λ)2

Λ

qλ Aλ/Rλ - CC ∑
λ)2

Λ

qλBλ/Rλ (4.8)

Rλ ) -2εκrλ (4.9)

A0 ) exp(-κ0r1) (4.10)

Aλ ) exp(-κrλ) (4.11)

Bλ ) exp(κrλ) (4.12)

C0 ) ε0(1 + κ0r1) exp(-κ0r1) (4.13)

Cλ ) ε(1 + κrλ) exp(-κrλ) (4.14)

Dλ ) ε(1 - κrλ) exp(κrλ) (4.15)

CC ) ε(1 + κrC) exp(-κrC) (4.16)

DC ) ε(1 - κrC) exp (κrC) (4.17)

κ0 ) ( 8πNAVe2

ε0kBT‚1000)1/2

I1/2 (4.18)

κ ) (8πRNAVe2

εkBT‚1000)1/2

I1/2 (4.19)

∆µiλ(q) ) zieUλ(q) (i ) H, M, or MOH) (4.20)

P ) ∑
λ)1

Λ

∑
(klh)λ

∏
λ)1

Λ

P(k,l,h)λ (4.21)

fλ(qj) ) zM(kλ - lλ ) + zMOHlλ + zHhλ - qλ

) zMkλ - lλ + hλ - qλ ) 0 (1 e λ e Λ) (4.22)

zMOH ) zM - 1 (4.23)

zH ) 1
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where the total number of binding sites is the same as the one
in a multishell model. This single-shell model removes some
structural details about the dendrimer so binding properties may
be viewed as shell-averaged ones. In addition, the diameter of
the single shell no longer has a clear physical meaning. Figure
2 shows that if all shells have the same set of intrinsic binding
constants for M, MOH, and H, then a single-shell model gives
nearly the same results as those from a multishell model.20

The above result implies that, in some cases, the form of the
interaction energy may be independent of the total shell number,
although this is not obvious when examining the complicated
analytical expression for∆µ shown in (4.20). Substituting (2.12),
(2.16), (2.17), and (4.20) into (4.21), we can show that indeed
the partition function for a multishell model can be recast into

where (K, L, H) specifies the overall stoichiometry,Ω(K,L,H)
is the total number of microstates contained under this stoichi-
ometry, and∆W is a unitless total interaction energy:

δλ can be thought of as a unitless∆µ per unit bound charge at
shellλ. A necessary, although not sufficient, condition for (5.1)
to be reduced to the single-shell form is that∆W depends just
on the overall stoichiometry, but not on the stoichiometry of a
specific shell, i.e., (k, l, h). In fact, we find (see Figure 3B),
through direct simulation, that∆W varies quadratically with
respect to the total chargeQ:

wherewj is a constant. In other words, the average interaction

energy per unit bound chargeδh is a linear function ofQ with
a slope ofwj :

soδh is just a charge-averagedδλ. The linearity ofδh with respect
to Q implies that eachδλ is also a linear function ofQ

Substituting (5.6) into (5.5), it can be shown thatwj is a charge-
averaged variable as well:

wj is proportional to the strength of site-to-site interactions, and
it is characteristic of the dendrimer geometry.

Comparison with the Ising Model.Although equivalent to a
single-shell model under certain conditions, the multishell model

TABLE 1: Comparison of Computation Time (s) for Three
Numeric Algorithmsa

shell configurations
statistical
method I

statistical
method II

isotherm
method

1 shell: H binding only 0.11 0.060 <0.001
2 shells: H binding only 2.7 0.50 0.050
5 shells: H binding only 10 600 753 44
1 shell: H and M binding 26 5.8 0.22
2 shells: H and M binding 134 000 1750 0.39
5 shells: H and M binding s s 354

a Note: (a) In statistical method I, no terms in a partition function
are skipped. (b) In method II, some terms below a preset threshold are
predicted and skipped. (c) The shell configurations are modeled with
a NH2-terminated PAMAM dendrimer in mind: a 1-shell model
includes only 64 H-binding sites and all the inner shells are ignored.
A 2-shell model has a (64, 32) configuration, and a 5-shell model has
(64, 32, 16, 8, 4) binding sites. When competitive M binding is included
in a model, the amount of M is set to be 30% of its maximum binding
number. (d) All computation is carried out using a custom-written
program on a desktop computer (Dell, Dimension 4100, Pentium III/
733 MHz). The times listed are the times for completing calculation
of a 50-point pH titration curve. These results represent typical ones
since the exact times will change when other parameters (such as
binding constants, solution concentrations, and ionic strength) change.
(e) All numbers have a unit of seconds. A “s” entry means that the
time is expected to be very long, and it has not been tested.

P ) ∑
KLH

Ω(K,L,H)âM
K-LâMOH

LâH
H10-∆W[M] K[H]H-L

(5.1)

∆W )
1

2
∑
λ)1

Λ

δλqλ (5.2)

δλ )
f0e

2

kBT ln(10)

(xλAλ + yλBλ)

rλ
(5.3)

2∆W ) wjQ2 ) δhQ (5.4)

Figure 2. Equivalence of (a) 4-shell (solid line) and (b) 1-shell (dotted
line) models for an abstract OH-terminated PAMAM dendrimer:
average binding numbers of three types of binding sites (M, MOH,
and H), expressed as a percentage of the maximum binding numbers,
as a function of pH. The geometric structure of the 4-shell model is
assumed to be an outer shell of OH groups with zero charge (q1 ) 0)
and a diameter of 4.5 nm and four shells of binding spheres with a
configuration of 3.6 nm (32), 2.9 nm (16), 2.2 nm (8), and 1.5 nm (4)
with the numbers in parentheses denoting the maximum number of
binding sites in each shell.20 The structure of the generic 1-shell model
includes two shells: an outer shell of OH groups that do not bind and
an inner shell with a maximum binding number of 60 (the sum of the
4-shell model). Their effective diameters are slightly smaller than those
used in the 4-shell model, corresponding tof0 of 1.034 in eq 5.3. In
both models, the binding constants for M and H are both set to 7.0
(10-based logarithm), the dielectric constant of the outer medium is
80.36, the dielectric constant of the dendrimer is 60, the fractional void
volume is 1.0, the ionic strength is 0.01 M, the dendrimer concentration
is 0.2 mM, andzM ) γM ) 2. The amount of M present is set to be
50% of its stoichiometric amount; thus, the maximum binding for M
is leveled at 50% in this graph.
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is still useful to simulate cases where different shells have
different sets of binding constants. In addition, it can be
illustrated here that a multishell model is also useful for testing
an important conclusion from B&K’s Ising model: that is, odd-
numbered dendrimer shells are protonated at a different pH than
the even-numbered shells.7,8 Experimentally, this is seen as a
titration curve with a plateau region flanked by two transition
steps corresponding to proton binding at the above two groups
of shells. It is important to point out that, in the Ising model,
the intrinsic proton binding constantspKH at all sites do not
differ appreciably from each other, so the two steps are entirely
due to electrostatic interactions between neighboring shells.

However, using our shell model, we have failed to duplicate
this feature after trying many combinations of structural
parameters, including adjusting the interaction energy to high-
light the difference between shell-level binding curves. Gener-
ally, we see sites at inner shells experiencing more electrostatic
repulsion than those in outer shells; therefore, inner-shell binding
is weaker than that at outer shells at any given pH but no odd-
even behavior characteristic of an Ising model is observed
(Figure 3A).

Many factors might be responsible for this difference in
models but we feel that that only two related factors are
important. First, the mean-field approximation used in our shell
model is expected to fail when site-to-site interactions are
strong.10 The failure is the result of ignoringsite-to-site
correlation. Mean-field approximation says that the total
interaction energy depends only on the number of sites occupied
but not on their spatial distribution. In a sense, this approxima-
tion and the assumption of a uniformly distributed charge we
used in deriving (4.2) are consistent and compatible with one
another: both ignore the spatial structure of charge within a
dendrimer shell. We want to emphasize here that we have also
used a continuous charge approximation in (4.2), but it should
be distinguished from the uniform charge assumption. The
continuous charge approximation consistently leads to overes-
timation of the total interaction energy, especially when the
binding number is small.17 However, as our results (Figure 3)
indicate, the absolute strength of interaction energy alters little
the overall characteristics of the binding curve: a curve that
changes monotonically as a function of pH without a middle
plateau region. In contrast, site-to-site correlation is the highlight
of B&K’s Ising model. For example, imagine six binding sites
on a linear ring, and assume that only nearest-neighbor
interactions are significant. Obviously, three sites can be filled
without incurring much free energy penalty because they can
be arranged with zero nearest-neighbor. This configuration will
be observed in reality with a high probability (large Boltzmann
weighting) whereas others are less likely. However, when the
remaining sites are filled, there will be a steep increase in the
overall interaction energy (two to six nearest neighbors will be
formed). Thus, if interactions are strong, the second group of
sites will appear to protonate at a pH well separated from the
first group of three sites. This is exactly the even-odd behavior
discussed earlier.

The second factor responsible for the difference in models is
related to the nearest-neighbor approximation commonly used
in Ising models. B&K’s Ising model counts nearest neighbors
using a topological tree so interactions between sites located
on two different branches are completely ignored.7 This is
effectively the same as saying that intrashell charge interactions
are absent. As a consequence, shell-to-shell interactions appear
more prominent than they actually are. An obvious remedy is
to include next-nearest-neighbor interactions. However, this will
probably require more computational power, thus further
restricting the scope of the Ising model, especially when metal
binding is included.

Simulation of pH Binding CurVes.We now focus our attention
on the effects of one variable, namely, the strength of site-to-
site interactions, on pH binding curves. The effects of other
variables, such as binding constants, will be discussed in a
subsequent paper.

Interaction energy can be changed by many variables,
including the dendrimer geometric structure (shell radii), ionic
strength, and dielectric constants. To express our results more
generally, the strength of interactions is adjusted by changing

Figure 3. (A) H binding curves of a 4-shell model for an abstract PPI
dendrimer: average H binding number, expressed as percentage of the
maximum binding number, as a function of pH for the (a) first-shell
(16 sites), (b) second-shell (8 sites), (c) third-shell (4 sites), (b) fourth-
shell (2 sites), and (e) sum of all shells. The geometric structure of the
4-shell model is assumed to be an outer shell of NH2 groups with a
diameter of 1.9 nm and three shells of tertiary amines with diameters
of 1.4, 0.9, and 0.75 nm, respectively. The log-binding constants for
each shell have been chosen to be close to the values used by B&K:
10.7 for the primary amines, 10.35 for the tertiary amines, and 9.8 for
the inner two nitrogens.8 Other parameters are similar to those used in
Figure 2, except the dendrimer concentration is 1.0 mM andf0 is set to
0.815, corresponding to an effective interaction parameterwj of 0.05.
This choice seems to highlight the difference between shells, and other
choices ofwj tend to give shell-level binding curves having the same
shape as the overall binding curve. (B) Average interaction energy per
bound charge (δh) as a function of the total charge (Q). The linearity,
as described in (5.5), is maintained only whenQ is 75% below its
maximum value. The legends for each curve are the same as those
in (A).
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the magnitude ofwj in eq 5.4. Aswj increases, it becomes easier
to deprotonate a dendrimer so the apparent transition point at
half-protonation for H binding moves toward the low pH end
(Figure 4A). Meanwhile, competitive binding between M and
H shows an interesting trend. If we assume that both have the
same intrinsic binding constants, then M binding seems to be
less competitive as the strength of interactions increases. Thus,
the transition pH, at which M reaches the half-saturation point,
systematically moves toward the high pH end (Figure 4B). This
feature is expected for multivalence metal ions. Consider the
case wherezM ) γM > 1: if all sites are occupied by M, then
the total number of pairwise interactions experienced with a
single test charge will be reduced by a factor ofzM compared
to the case when all sites are occupied by protons. However,
from Coulomb’s law, the strength of each pairwise interactions
should grow roughly by a factor ofzM

2. Thus, there is a free
energy penalty when replacingzM protons with one metal ion.
Another interesting feature in Figure 4 is that when site-to-site
interactions are extremely strong, the binding numbers for both
M and H cannot reach their saturation limits within a reasonable
but wide window (pH 2 to pH 12).

Summary

In this study, we have used a shell model to study proton
and metal ion binding equilibria with dendrimers. Numeric
results based on this shell model are obtained using two
computational methods: a statistical method and an isotherm
method. Both methods give similar results, but the isotherm
method requires less computation time. Therefore, we anticipate
that the latter will be adopted more readily, especially by
experimental chemists who wish to obtain results quickly using
only desktop computers.

Binding of charged probe ions to dendrimers is difficult to
study using conventional or phenomenological methods because
the connection between macroscopic binding constants and
microscopic chemical structures is indirect. In contrast, methods
presented here only contain a set of intrinsic binding constants
for a few distinctive binding sites. These intrinsic binding
constants are more useful in characterizing the chemical structure
of a binding site than apparent macroscopic binding constants.
We will show in a subsequent paper how to extract binding
constants from experimental data.

Beyond site-level parameters, one often wishes to model the
spatial configuration of a charged polymer. In fact, such
information has been routinely incorporated in models for
proteins.10,21-23 Compared to the methods used by the research-
ers working in the field of protein folding and ionization, the
methods reported here are much less sophisticated. Nevertheless,
we did make a modest attempt to predict the spatial distribution
of bound charge by approximating a dendrimer as discrete
charged shells. For example, our results show that binding at
an inner shell is weaker than that at an outer shell even if the
intrinsic binding constants for all the shells are identical.
However, the reliability of such predictions is still uncertain
because they depend on specific choice of structure models.
The disagreement between our results and those predicted with
the Ising model of Borkovec and Koper is a good example of
the above point. Our methods also require the use of mean-
field approximation, which tends to give large errors when site-
to-site interactions are strong. More accurate results will be
obtained if binding sites are treated as discrete charges and site-
to-site correlation is explicitly included.10,21However, doing so
probably will not yield an analytical solution for the electric
potential, and the Poisson-Boltzmann equation will have to
be solved numerically.24

Acknowledgment. We gratefully acknowledge the Office
of Naval Research for full support of this work.

Supporting Information Available: Text and figures on
the following topics: (a) comparison between statistical and
isotherm methods, (b) influence of core diameters on simulation
results, and (c) evaluation of errors due to continuous charge
approximation. This material is available free via the Internet
at http://pubs.acs.org.

References and Notes

(1) Zhao, M.; Sun, L.; Crooks, R. M.J. Am. Chem. Soc.1998, 120,
4877-4878. Preparation of Cu Nanoclusters within Dendrimer Templates.

(2) Zhao, M.; Crooks, R. M.Angew. Chem., Int. Ed. Engl.1999, 38,
364-366. Homogeneous Hydrogenation Catalysis using Monodisperse,
Dendrimer-Encapsulated Pd and Pt Nanoparticles.

(3) Grohn, F.; Bauer, B. J.; Akpalu, Y. A.; Jackson, C. L.; Amis, E. J.
Macromolecules2000, 33, 6042-6050. Dendrimer Templates for the
Formation of Gold Nanoclusters.

(4) Sideratou, Z.; Tsiourvas, D.; Paleos, C. M.Langmuir 2000, 16,
1766-1769. Quaternized Poly(propylene imine) Dendrimers as Novel pH-
Sensitive Controlled-Release Systems.

Figure 4. Progression of binding curves as the strength of site-to-site
interactions increases: by adjustingf0, wj is set to (a) 0.00, (b) 0.01, (c)
0.02, (d) 0.05, (e) 0.1, (f) 0.2, and (g) 0.5. An abstract OH-terminated
PAMAM dendrimer, which has the same set of geometric parameters
as the model used in Figure 2, is used here. For clarity, the binding
numbers for H are shown in a separate graph (A), and the binding
numbers for M and MOH are combined into a single number in (B).

Dendrimers Interactions with Charged Probe Molecules J. Phys. Chem. B, Vol. 106, No. 23, 20025871



(5) Kukowska-Latallo, J. F.; Bielinska, A. U.; Johnson, J.; Spindler,
R.; Tomalia, D. A.; Baker, J., Jr.Proc. Natl. Acad. Sci. U.S.A.1996, 93,
4897-4902. Efficient Transfer of Genetic Material into Mammalian Cells
using Starburst Polyamidoamine Dendrimers.

(6) Zhang, H.; Dubin, P. L.; Ray, J.; Manning, G. S.; Moorefield, C.
N.; Newkome, G. R.J. Phys. Chem. B1999, 103, 2347-2354. Interaction
of a Polycation with Small Oppositely Charged Dendrimers.

(7) Borkovec, M.; Koper, G. J. M.Macromolecules1997, 30, 2151-
2158. Proton Binding Characteristics of Branched Polyelectrolytes.

(8) Koper, G. J. M.; van Genderen, M. H. P.; Elissen-Roman, C.; Baars,
M. W. P. L.; Meijer, E. W.; Borkovec, M.J. Am. Chem. Soc.1997, 119,
6512-6521. Protonation Mechanism of Poly(propylene imine) Dendrimers
and Some Associated Oligo Amines.

(9) Borkovec, M.; Koper, G. J. M.J. Phys. Chem.1994, 98, 6038-
6045. Ising Models of Polyprotic Acids and Bases.

(10) Bashford, D.; Karplus, M.J. Phys. Chem.1991, 95, 9556-9561.
Multiple-Site Titration Curves of Proteins: An Analysis of Exact and
Approximate Methods for Their Calculation.

(11) Bard, A. J.; Faulkner, L. R.Electrochemical Methods, Fundamentals
and Applications; Wiley: New York, 1980.

(12) Tanford, C.Physical Chemistry of Macromolecules; Wiley: New
York, 1961.

(13) Martell, A. E.; Motekaitis, R. J.Determination and Use of Stability
Constants; VCH Publishers: New York, 1992.

(14) McQuarrie, D.Statistical Mechanics; Harper and Row: New York,
1976.

(15) Baxter, R. J.Exactly SolVed Models in Statistical Mechanics;
Academic Press: New York, 1982.

(16) Bosman, A. W.; Schenning, A. P. H. J.; Janssen, R. A. J.; Meijer,
E. W. Chem. Ber./Recueil1997, 130, 725-728. Well-Defined Metalloden-
drimers by Site-Specific Complexation.

(17) See data in the Supporting Information.
(18) Probstein, R. F.Physicochemical Hydrodynamics: An Introduction;

Butterworth: Boston, 1989.
(19) Press: W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.

Numerical Receipes in C; Cambridge University Press: Cambridge, 1988;
Chapter 9.

(20) Structural parameters of dendrimers used here are determined by
either size-exclusion chromatography or small-angle neutron scattering: see,
e.g.: Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K.Acc.
Chem. Res.2000, 34, 181-190.

(21) Tanford, C.; Roxby, R.Biochemistry 1972, 11, 2192-2198.
Interpretation of Protein Titration Curves. Application to Lysozyme.

(22) Honig, B.; Nicholls, A.Science1995, 268, 1144-1149. Classical
Electrostatic in Biology and Chemistry.

(23) Beroza, P.; Case, D. A.J. Phys. Chem.1996, 100, 20156-20163.
Including Side Chain Flexibility in Continuum Electrostatic Calculations
of Protein Titration.

(24) Rajasekaran, E.; Jayaram, B.; Honig, B.J. Am. Chem. Soc.1994,
116, 8238-8240. Electrostatic Interactions in Aliphatic Dicarboxylic
Acids: A Computational Route to the Determination of pKa Shifts.

5872 J. Phys. Chem. B, Vol. 106, No. 23, 2002 Sun and Crooks


