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We report here the fabrication and characterization of electrodes

J d 50 nm
—

constructed from single carbon nanotubes. The sigmoidal voltam- —

metric response of these nanotubular electrodes is characteristic

of steady-state radial diffusion. The limiting current of uninsulated Electroactive Tip _

electrodes scales linearly with the depth of immersion into Figure 1. (a) Schematic representation of a partially insulated carbon-
electrolyte solutions. However, the walls of nanotubular elec- nanotube electrode. {iri) TEM images of mounted nanotubular elec-
trotrodes can be selectively insulated with a thin layer of trodes showing (b) a 3pm long electrode; (c) the tip of &100-nm
polyphenol so that electrochemical activity is limited to the tip diameter uninsulated nanoelegtrode; (dyB0-nm thick insulation layer
region. In this case the limiting current is essentially independent ©f Polyphenol on a~220-nm diameter nanotube.

of immersion depth. These nanotubular electrodes are robust, can ) o

be fabricated in high yield, and are of uniform diameter. Most have also been considetéd* but have so far been limited to
importantly, their great strength and high length-to-diameter aspecttheir use as tips in scanning probe microscopy (SF¥).

ratio will be particularly valuable for applications such as scanning ~ To make practical electrochemical probes, nanotubes must be
electrochemical microscopy (SECMand electrochemical analy- ~ attached to and in ohmic contact with a macroscopic, conductive

sis of biological material3:® handle and cut to the desired length. Additionally, for many
Interest in carbon nanotubes stems from their unique geo- €lectrochemical applications, the nanotube walls must be insulated.
metrical, mechanical, electronic, and chemical propeftieEo Figure 1 shows a schematic illustration of an insulated nanoelec-

date, most fundamental research on nanotubes has been focusd@iode and transmission electron microscopy (TEM) images of
on their growth mechanisftheir sorption propertie¥,refinement several electrodes that reveal details about the electrode micro-
of production and purification method;!® and direct measure- structure?* The electrodes consist of 8200 nm diameter carbon
ments of various physical propertis1® Practical applications nanotubes attached to sharpened Pt wires and cut to a length of
15-50 um (part b of Figure 1%° Part ¢ of Figure 1 shows a

* To whom correspondence should be addressed. Telephone: 409-845-high-resolution image of the end of a clean nanotube, and part d
5629. Fax: 409-845-1399. E-mail: crooks@tamu.edu. i i i i
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L R L The slope of the best-fit line for this pull-out experiment is

b h(nm) 0.41 nAlum, very close to the value (0.37 ryh) expected for
oop o an infinitely long cylindrical microelectrod®:32 However, this
diffusion model is not strictly correct at small immersion depths
(vide supra) where the diffusion-layer thickness is on the order
of the electrode lengtf. Indeed, we did not observe the

] characteristic signatures of radial diffusion to cylindrical ultra-
] microelectrodes (i.e., slightly peak-shaped CVs having a distinct
] hysteresis between the forward and backward séauasjil the

1 immersion depth was greater thari5 um. To our knowledge,

] the particular length/diameter combination of our nanoelectrodes
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T R v S S represents an ul_tra-microelectrode geometry that has not been
Potential (mV vs. Ag/AgO) analyzed theoretically.

Figure 2. CVs from an uninsulated 150-nm diameter nanotubular ~ Part b of Figure 3 shows a plot af, vs h after insulating the
electrode in 5 mM Ru(Ngs + 0.1 M K;SOy (v = 100 mV/s). CVs lower 8um of the electrode with polyphenol. The near-zero slope
indicate near-ideal radial diffusion with limiting currents that scale with  (0.02 nAlm) for h < 8 um (the insulated region of the electrode)
immersion depth. demonstrates the effectiveness of the insulation. Previous attempts
at coating carbon-fiber microelectrodes (as distinct from nano-
tubes) with phenol-containing polymers have produced mixed
results, especially in terms of applicability to single-cell analy-
sis#34 Our method differs from previously reported procedures
in that the polymerization was initiated in a strongly acidic
medium that does not contain a cross-linking allyl phenol. This
results in thinner, less permeable coatings than can be achieved
T TIE 20 35 55 {0 15 by polymerization at high pF¥ The constant current (0.22 nA)
immersion Depth (um) Immersion Depth (km) in the flat-current region of this plot (part b of Figure 3) arises
Figure 3. Limiting current as a function of immersion depth for the entirely from the exposed tip. The deviation of this current from
electrode used to obtain the data shown in Figure 2: (a) uninsulated andthe predicted value (0.10 n&)*! for a 150-nm diameter disk
(b) insulated-and-cut nanotubular electrodes. Current is recorded as theglectrode indicates again that the cut at the electrode end is not
electrode is raised, and the zero-depth is chosen as the point where thgyerfect. Despite this small nonideality, our results are fully

electrode just pulls out of solution as indicated by zero limiting current -gnsistent with the electrode configurations depicted in Figure
thereafter. Other conditions were the same as in Figure 2. 1.
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In summary, we have demonstrated that electrochemical
tubular electrode at several immersion depthshe sigmoidal  nanotubular electrodes can be constructed from single carbon
voltammograms, which show scan-rate-independent limiting nanotubes. Insulated electrodes of arbitrary length withBID-
current (up to 1 V/s), are characteristic of radial diffusion to nm diameters can be routinely fabricated. These electrodes
spherical ultramicroelectrodésThis behavior is consistent with represent a new application of carbon nanotubes that takes
fast electron transfer between Ru(jJ5t" and the amorphous  advantage of their geometrical shape, mechanical strength, and
carbon surfacé and a diffusion-layer thickness greater than the glectrical conductivity. We will report shortly on applications of

electrode length or the immersion deﬁ?_h. these new electrodes to scanning electrochemical microscopy and
The limiting current, i;,, at the uninsulated nanotubular bioelectrochemistry.

electrode varies linearly with immersion depthpart a of Figure
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